

o. Über mich

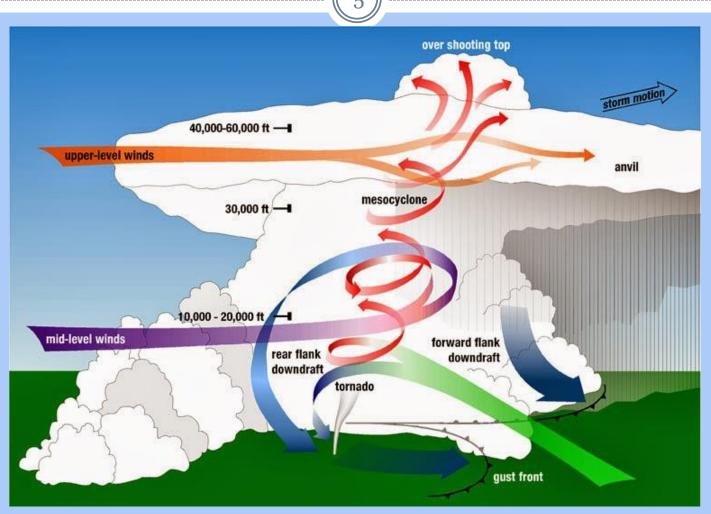
gebürtiger Waldviertler

Studium der Meteorologie in Wien

 seit 2008 ehrenamtlicher Sturmjäger beim Verein Skywarn Austria

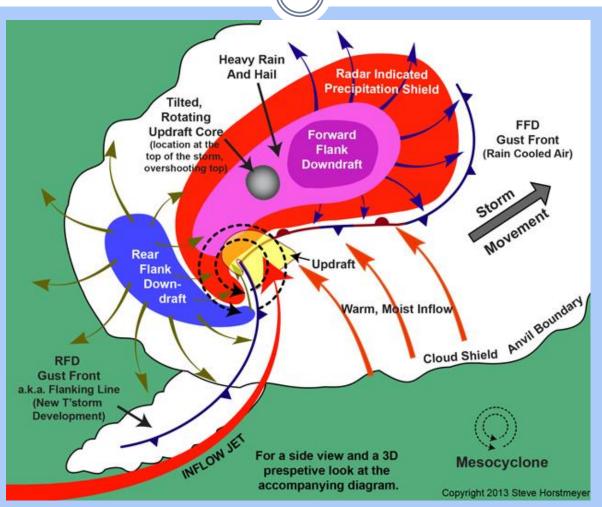
1. Wer oder was ist Skywarn AUSTRIA?

- ehrenamtlicher Verein (gegr. 2003)
- Wetterbeobachtung
- Unwettermeldungen
- Schadensanalysen
- 100-150 Mitglieder österreichweit



1. Wer oder was ist Skywarn AUSTRIA?

» **SKYWARN Austria** arbeitet gleich seinem amerikanischen Vorbild als "**Augen im Sturm"** eng mit österreichischen Wetterdiensten, Medien und Katastrophenschutzeinrichtungen zusammen und hilft so maßgeblich mit, die Wetterwarnungen der Wetterdienste und Medien für die Bevölkerung zu verbessern. «



2. Entstehung von Tornados

Typ I - Tornado

2. Entstehung von Tornados

Typ I - Tornado

3. Fujita-Skala

\mathcal{U}	\neg	-))
$/\!\!/$	/	
"		//

		Unterl	critisch		Schwach				
		(Sub-c	critical)		(Weak)				
Fujita	F	-2	F-1		F0		F1		
TORRO	T-4	T-3	T-2	T-1	Т0	T1	Т2	Т3	
Beaufort	B0, B1	B2, B3	B4, B5	B6, B7	B8, B9	B10, B11	B12, B13	B14, B15	
$v~{ m in}~{ m m}{ m s}^{-1}$	0 - 3	3 - 7	7 – 12	12 - 18	18 - 25	25 - 33	33 – 42	42 - 51	
v in ${ m km}{ m h}^{-1}$	0 – 11	11 - 25	25 – 43	43 - 65	65 – 90	90 – 119	119 – 151	151 – 184	
Δv in m s $^{-1}$	3	4	5	6	7	8	9	9	
$ar{S}$ in $\%$	0.0	0.0	0.0	0.01	0.05	0.10	0.25	0.80	
$ar{S}_+$ in %	0.0	0.0	0.0	0.0	0.01	0.05	0.10	0.25	

Signifikant

(Significant)

		Sta	ark		Verheerend				
		(Stre	ong)		(Violent)				
Fujita	F	2	F3		F	F4		F5	
TORRO	T4	T5	Т6	Т7	Т8	Т9	T10	T11	
Beaufort	B16, B17	B18, B19	B20, B21	B22, B23	B24, B25	B26, B27	B28, B29	B30, B31	
$v~{\rm in}~{\rm m}{\rm s}^{-1}$	51 – 61	61 - 71	71 – 82	82 - 93	93 – 105	105 - 117	117 – 130	130 - 143	
$v\ln\mathrm{km}\mathrm{h}^{-1}$	184 – 220	220 - 256	256 – 295	295 – 335	335 – 378	378 - 421	421 – 468	468 - 515	
$\Delta v \mathrm{in} \mathrm{m s^{-1}}$	10	10	11	11	12	12	13	13	
\bar{S} in %	3.0	10.0	30.0	90.0	100	100	100	100	
$ar{S}_+$ in %	0.80	3.0	10.0	30.0	60.0	80.0	90.0	95.0	

3. Fujita-Skala

		1
		11
//		- 11
//	\sim	
/	()	- 1
	><	- 1
	()	- 1
	\sim	
//		_//
//		//
1	_	-/

		Unterl	critisch		Schwach				
		(Sub-c	critical)		(Weak)				
Fujita	F	-2	F-1		F0		F1		
TORRO	T-4	T-3	T-2	T-1	Т0	T1	Т2	Т3	
Beaufort	B0, B1	B2, B3	B4, B5	B6, B7	B8, B9	B10, B11	B12, B13	B14, B15	
$v~{ m in}~{ m m}{ m s}^{-1}$	0 – 3	3 - 7	7 – 12	12 - 18	18 – 25	25 - 33	33 – 42	42 - 51	
v in ${\rm km}{\rm h}^{-1}$	0 – 11	11 - 25	25 – 43	43 – 65	65 – 90	90 – 119	119 – 151	151 – 184	
$\Delta v~{ m in}~{ m m}{ m s}^{-1}$	3	4	5	6	7	8	9	9	
$ar{S}$ in $\%$	0.0	0.0	0.0	0.01	0.05	0.10	0.25	0.80	
$ar{S}_+$ in %	0.0	0.0	0.0	0.0	0.01	0.05	0.10	0.25	

Karlstein/Thaya

Signifikant
(Significant)

		Sta	nrk		Verheerend				
		(Stro	ong)		(Violent)				
Fujita	F	2	F3		F4		F5		
TORRO	T4	T5	Т6	Т7	Т8	Т9	T10	T11	
Beaufort	B16, B17	B18, B19	B20, B21	B22, B23	B24, B25	B26, B27	B28, B29	B30, B31	
$v \text{ in m s}^{-1}$	51 – 61	61 - 71	71 – 82	82 - 93	93 – 105	105 - 117	117 – 130	130 - 143	
v in ${\rm km}{\rm h}^{-1}$	184 – 220	220 - 256	256 – 295	295 - 335	335 – 378	378 - 421	421 – 468	468 - 515	
$\Delta v { m in} { m m} { m s}^{-1}$	10	10	11	11	12	12	13	13	
$ar{S}$ in $\%$	3.0	10.0	30.0	90.0	100	100	100	100	
$ar{S}_+$ in %	0.80	3.0	10.0	30.0	60.0	80.0	90.0	95.0	

3. Fujita-Skala

//		- //
(\cap	١.
/	フ	
//		川
~		/

		Unterk	critisch		Schwach				
		(Sub-c	critical)		(Weak)				
Fujita	F	-2	F-1		F0		F1		
TORRO	T-4	T-3	T-2	T-1	Т0	T1	Т2	Т3	
Beaufort	B0, B1	B2, B3	B4, B5	B6, B7	B8, B9	B10, B11	B12, B13	B14, B15	
$v~{ m in}~{ m m}{ m s}^{-1}$	0 - 3	3 - 7	7 – 12	12 - 18	18 – 25	25 - 33	33 – 42	42 - 51	
v in ${ m km}{ m h}^{-1}$	0 – 11	11 - 25	25 – 43	43 - 65	65 – 90	90 – 119	119 – 151	151 – 184	
$\Delta v { m in} { m m} { m s}^{-1}$	3	4	5	6	7	8	9	9	
$ar{S}$ in %	0.0	0.0	0.0	0.01	0.05	0.10	0.25	0.80	
$ar{S}_+$ in %	0.0	0.0	0.0	0.0	0.01	0.05	0.10	0.25	

Signifikant

(Significant)

		(organicant)									
		Sta	ark		Verheerend						
		(Stre	ong)		(Violent)						
Fujita	F	2	F	3	F	4	F	5			
TORRO	T4	T5	Т6	Т7	T8 🚣	Т9	T10	T11			
Beaufort	B16, B17	B18, B19	B20, B21	B22, B23	B24, B25	B26, B27	B28, B29	B30, B31			
$v~{ m in}~{ m m}{ m s}^{-1}$	51 – 61	61 - 71	71 – 82	82 – 93	93 – 105	105 – 117	117 – 130	130 – 143			
v in ${ m km}{ m h}^{-1}$	184 – 220	220 - 256	256 – 295	295 – 335	335 – 378	378 – 421	421 – 468	468 – 515			
$\Delta v \mathrm{in} \mathrm{m s^{-1}}$	10	10	11	11	12	12	13	13			
$ar{S}$ in $\%$	3.0	10.0	30.0	90.0	100	100	100	100			
$ar{S}_+$ in %	0.80	3.0	10.0	30.0	60.0	80.0	90.0	95.0			

Wr. Neustadt [1916]

4. Tornados – wie selten sind sie wirklich?

10

Ausgewählte Daten aus der Datenbank

ausgewählt: alle Ereignisse - Tornados (Wind-/Wasserhosen/Großtromben)

- über Land
- stattfindend zwischen 1-1-2009 00:00:00 und 21-11-2016 24:00:00 GMT/UTC

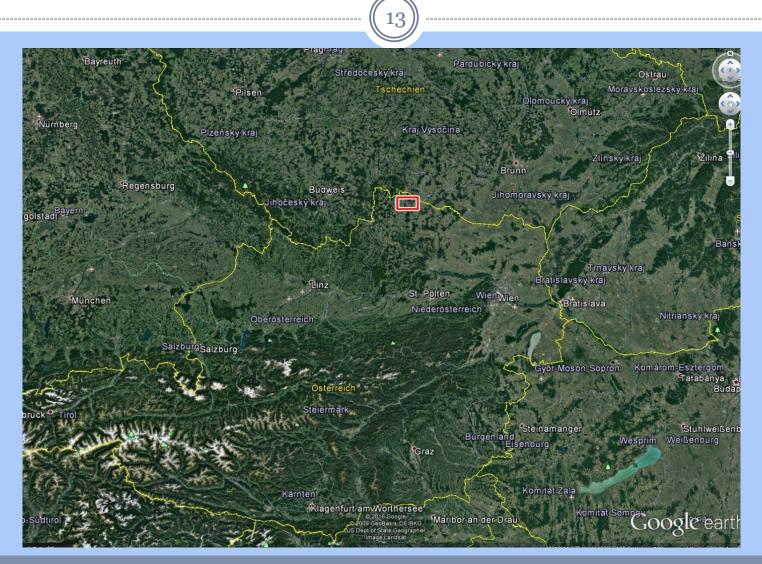
Anzahl ausgewählter Meldungen: 1841

Nur die aktuellsten 25 Ereignisse werden in der Tabelle gezeigt

Dynamic map Static Map

4. Tornados – wie selten sind sie wirklich?

- Tornado in Wr. Neustadt 1916: 32 Tote
- Tornado in Litschau 1966
- Tornado in Wien 2003
- Tornado im Gurktal 2006
- Tornado in Klosterneuburg 2010
- Tornado bei Müllendorf/Eisenstadt 2011

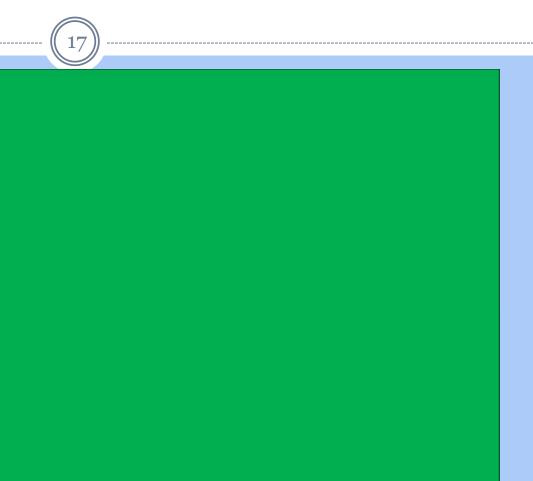

=> rund <u>10</u> Tornados pro Jahr in Österreich (hohe Dunkelziffer!)

4. Tornados – wie selten sind sie wirklich?

12

- Unterschied USA <--> Europa: Topographie
- "europäische" Tornado-Alley

Tschechisches Wetterradar - http://portal.chmi.cz/files/portal/docs/meteo/rad/data_jsradview.html



- Schneise: mit ein paar
 Unterbrechungen rund 10 km lang
- Stärke: F2/T4, vereinzelt auch T5 denkbar
- großteils Wald-/Flurschäden, teils aber auch beschädigte
 Gebäude
- wie durch ein Wunder keine Personenschäden!

6. Schäden des Tornados

7. Vorhersage von Tornados

- Vorhersage und Vorwarnung wären wünschenswert
- aber: extrem kleinräumiges Wetterphänomen
- punktuelle Tornadovorhersage nicht möglich
- USA: Doppler-Radar, damit im besten Fall kurzfristige "Vorhersage" machbar
- Fakt ist: Tornados sind kein US-amerikanisches Phänomen, sie gab und gibt es auch bei uns!

8. Quellenverzeichnis

- http://www.skywarn.at [21.11.2016]
- www.eswd.eu [20.11.2016]
- http://stevehorstmeyer.blogspot.co.at/2013_06_01_archive.html [19.11.2016]
- https://de.wikipedia.org/wiki/TORRO-Skala [21.11.2016]
- https://storm-chasers.de/Thread/291-Klassifikation-von-Tornados/ [22.11.2016]
- http://portal.chmi.cz/files/portal/docs/meteo/rad/data_jsradview.html [20.11.2016]